Hình vẽ:
Chúc bạn học tốt!
Hình vẽ:
Chúc bạn học tốt!
Cho hình thang ABCD (AB//CD). Trên cạnh AD lấy hai điểm M,N sao cho AM=MN=ND. Từ M,N kẻ các đường thẳng song song vơi hai đáy của hình thang cắt BC lần lượt tại P,Q. Biết AB=a, CD=b, tính MP,NQ
Cho hình bình hành ABCD, M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA. CMR:
a, MNPQ là hình bình hành
b, AC,BD,MP,NQ đồng quy tại một điểm
Cho tứ giác ABCD có 2 cạnh đối AD = BC. GỌi M, N,P,Q lần lượt là trung điểm của AB, AC,CD, DB. Chứng minh rằng: MP là đường trung trực của QN
Từ điểm M nằm trong tam giác ABC, kẻ các tia Mx, My, Mz theo thứ tự vuông góc với BC, AC, AB. Trên các tia Mx, My, Mz lần lượt lấy các điểm P, Q, R sao cho MP=BC, MQ=CA, MR=AB. CMR: M là trọng tâm của tam giác PQR
cho tứ giác ABCD từ một điểm M trên đường chó BD kẻ MP, MQ lần lượt song song với BC và AD (P\(\in\)CD , Q\(\in\) AB)
c/m \(\dfrac{MP}{BC}+\dfrac{MQ}{AD}=1\)
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Cho hình thang cân ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a. CMR: Mp là tia phân giác của góc NMQ.
b. Hình thang cân ABCD phải có thên điều kiện gì để góc MNQ = 450
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
cho tứ giác ABCD,gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DA và I,K là trung điểm của các đường chéo AC,BD.Chứng minh : a) các tứ giác MNPQ là hình bình hành, INKQ là hình bình hành b) Các đường thẳng MN,NQ,IK đồng qui