Xét $\triangle ABD$ có: $MQ//AD$ với $M∈BD;Q∈AB$
(định lí Ta-lét)
Xét $\triangle CBD$ có: $MP//BC$ với $M∈BD;P∈CB$
\(\Rightarrow\dfrac{MP}{BC}=\dfrac{DM}{BD}\) (định lí Ta-lét)
Nên \(\Rightarrow\dfrac{MQ}{AD}+\dfrac{MP}{BC}=\dfrac{BM}{BD}+\dfrac{DM}{BD}=\dfrac{BM+DM}{BD}=\dfrac{BD}{BD}=1\text{}\text{}\)