\(\left\{{}\begin{matrix}a//b\\a\perp AB\end{matrix}\right.\Rightarrow b\perp AB\Rightarrow\widehat{B_1}=90^0\\ a//b\Rightarrow\widehat{D_1}+\widehat{C}=180^0\left(2.góc.trong.cùng.phía\right)\\ \Rightarrow\widehat{D_1}=180^0-130^0=50^0\)
Ta có: a//b
Mà \(a\perp AB\)
=> \(b\perp AB\Rightarrow\widehat{B_1}=90^0\)
Ta có: a//b
\(\Rightarrow\widehat{D_1}+\widehat{DCB}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{D_1}=180^0-\widehat{DCB}=180^0-130^0=50^0\)