bài 1 : cho ΔABC vuông tại A và góc C=30 độ .Trên cạnh BC lấy điểm D sao cho BD =BA
a)CM:ΔABD đều, tính góc DAC
b)vẽ DE vuông góc AC(E thuộc AC).CM:ΔADE=ΔCDE
c)cho AB=5cm .tính BC và AC
d)vẽ AH vuông góc với BC(H thuộc BC),CM:AH+BC>AB+AC
bài 2:cho tam giác ABC cân tại A .Trên tia đối của BC lấy điểm M ,trên tia đối của CB lấy N sao cho BM=CN, Vẽ BD vuông góc AM tại D , CE vuông góc AN tại E.Cho biết AB=10cm,BH=6cm. Tính độ dài đoạn AH
a)Chứng minh :△AMN cân
b)chứng minh :DB=CE
c) gọi K là giao của BC và EC.CM:ΔADK=ΔAEK
d)CM:KD+KE<2.KA
Bài 1:
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)
hay \(\widehat{ABD}=60^0\)
Xét ΔABD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)
Suy ra: \(\widehat{BAD}=60^0\)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)
\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)
hay \(\widehat{CAD}=30^0\)
b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Xét ΔADE vuông tại E và ΔCDE cân tại E có
DA=DC(ΔDAC cân tại D)
DE chung
Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)
c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)
nên BC=2AB(Định lí tam giác vuông)
Suy ra: \(BC=2\cdot5=10\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
Bài 2:
a) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(Hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
b) Xét ΔMDB vuông tại D và ΔNEC vuông tại E có
BM=CN(gt)
\(\widehat{M}=\widehat{N}\)(ΔAMN cân tại A)
Do đó: ΔMDB=ΔNEC(Cạnh huyền-góc nhọn)
Suy ra: DB=EC(hai cạnh tương ứng)