a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
Bổ sung đề: \(\widehat{C}=30^0\)
b) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABE}+30^0=90^0\)
hay \(\widehat{ABE}=60^0\)
Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(Hai cạnh tương ứng)
Xét ΔBAE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có \(\widehat{C}=30^0\)(gt)
nên \(BC=2\cdot AB\)(Định lí)
hay \(BC=2\cdot5=10\left(cm\right)\)
Vậy: BC=10cm
): Cho ΔABC vuông tại A, AB = 3 cm; BC = 5 cm; BD là đường phân giác. Kẻ DK vuông góc với BC tại K.
a) Tính độ dài cạnh AC.
b) Chứng minh:
c) Kẻ AI vuông góc với BC tại I. Chứng minh tia AK là tia phân giác của góc IAC.
d) Gọi N là giao điểm của hai đường thẳng AB và DK. Chứng minh AK // NC