Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
Cho hình thang cân ABCD, AB// CD, AB =3 cm, CD= 6cm, AD= 2,5. Hai đường cao AH và BK. Tính DH, DK, AH, AK.
Hinhd thang cân abcd có ab//cd, ab<cd .KẺ hai đường cao ah,bk
a) hd=kc
b)biết ab=6 cm ,cd=15 cm .Tính độ dài các đoẹn hk,kc
Cho hình thang cân ABCD ( AB // CD, AB < CD). Kẻ đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.
Lưu ý: Giải mạng sai., AB<CD nhé, hee
Hình thang ABCD ( AB // CD) có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân
Bài 1:Cho tam giác ABC cân tại A, các đường phân giác BD,CE ( D ϵ AC , E ϵ AB ). Chứng minh rằng BEDC là hình thang có đáy nhỏ bằng cạnh bên.
Bài 2: Hình thang ABCD ( AB II CD ) có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân
1/ cho hình thang cân ABCD ( AB // CD ), AB = 4cm, CD = 14cm, BC = 13cm. Tính BD.
2/ Cho hình thang cân ABCD (AB// CD ) AB = 9cm, CD = 15cm, AC vuông góc với BD. Tính đường cao BH.
Hình thang cân ABCD ( AB//CD) có 2 đường chéo vuông góc . biết đường cao AH=h . tính tổng 2 đáy
cho hình thang ABCD có(AB//CD,AB<CD)KẺ đường cao AE,BFcủa hình thang.CMR DE=CF
cho hình thang cân ABCD đáy AB//CD có hai đường chéo vuông góc biết đường cao AH= h . Tính tổng độ dài hai đáy