Do \(BC=BB'\Rightarrow BCC'B'\) là hình vuông
Trong mặt phẳng (BCC'B'), từ B' kẻ đường thẳng vuông góc C'E cắt CC' tại M và cắt BC kéo dài tại N
\(\Rightarrow M\) là trung điểm CC' và C là trung điểm BN
Trong mặt phẳng (ABCD), từ N kẻ đường thẳng song song AB cắt AD kéo dài tại P
\(\left\{{}\begin{matrix}NP\perp\left(BCC'B'\right)\Rightarrow NP\perp C'E\\C'E\perp B'N\end{matrix}\right.\) \(\Rightarrow C'E\perp\left(B'NP\right)\Rightarrow C'E\perp B'P\)
\(\Rightarrow F\) trùng P
\(DF=CN=BC=2\)