Gọi E là trung điểm của AC \(\Rightarrow BE\perp\left(SAC\right)\rightarrow BE\perp SC\)
Vẽ EF vuông góc với SC tại F. Ta có \(SC\perp BF\Rightarrow\widehat{EFB}=60^0\) là góc giữa (SAC) và (SBC)
Tam giác BEF vuông tại E nên \(EF=\frac{a\sqrt{2}}{2\sqrt{3}}\)
Tam gics SAC đồng dạng với tam giác EFC suy ra \(\sqrt{3}SA=SC\Leftrightarrow SA=a\)
Thể tích \(V=\frac{1}{3}S_{ABC}.SA=\frac{a^2}{6}\)