a) Xét ΔBAM và ΔDNA ,có :
\(\widehat{ABM}=\widehat{NDA}\) ( Vì ABCD là hình bình hành )
\(\widehat{BAM}=\widehat{DNA}\) (Vì AB//CD do ABCD là hình bình hành)
=> ΔBAM đồng dạng vs ΔDNA ( góc - góc )
=> \(\frac{BM}{AD}=\frac{BA}{DN}\)=> BM.DN = AD.AB
Mà AD , AB cố định => AD.AB không đổi => BM.DN không đổi
Vậy BM.DN không đổi.
Bổ sung lời giải câu b:
Vì $AD\parallel BC$ nên áp dụng định lý Ta-let có:
$\frac{AP}{PM}=\frac{DP}{PB}\Rightarrow \frac{AP}{AM}=\frac{DP}{PB+DP}(1)$
Vì $AB\parallel DN$ nên áp dụng định lý Ta-let có:
$\frac{AP}{PN}=\frac{BP}{DP}\Rightarrow \frac{AP}{AN}=\frac{BP}{DP+BP}(2)$
Từ $(1);(2)\Rightarrow \frac{AP}{AM}+\frac{AP}{AN}=\frac{DP+BP}{DP+BP}=1$
$\Rightarrow \frac{1}{AM}+\frac{1}{AN}=\frac{1}{AP}$ (đpcm)