Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Cho tam giác ABC trên cạnh AB và AC lần lượt lấy các điểm D và E. Đường thẳng song song với AC qua D cắt BE tại I. Đường thẳng song song với AB qua E cắt CD tại K. Gọi F là giao điểm của BE và CD. Chứng minh:
a) Tam giác DFI đồng dạng với tam giác CFE
b) Tam giác DFB đồng dạng với tam giác KFE
c) KI//BC
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC đường thẳng song song với BC cắt AB, AC tại D, E . Vẽ đường thẳng a qua A//BC a cắt các đường BE, CD lần lượt tại G, K . Chứng minh: A là trung điểm của KG
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.
a, Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+NK+AD.
c, Tìm vị trí của điểm I để MN song song với BC.
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau