\(y'=3x^2-6mx=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=4m^3\\x=2m\Rightarrow y=0\end{matrix}\right.\) với \(m\ne0\)
CĐ, CT đối xứng qua \(y=x\) khi:
\(4m^3=2m\Rightarrow m^2=\dfrac{1}{2}\Rightarrow m=\pm\dfrac{\sqrt{2}}{2}\)
b.
\(y'=x^2-2mx-1\) có \(ac< 0\) nên luôn có 2 cực trị
Gọi \(x_{1;}x_2\) là hoành độ 2 cực trị \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
\(y_1-y_2=\dfrac{1}{3}\left(x_1^3-x_2^3\right)-m\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)
\(=\dfrac{1}{3}\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]-m\left(x_1-x_2\right)\left(x_1+x_2\right)-\left(x_1-x_2\right)\)
\(=\dfrac{1}{3}\left(x_1-x_2\right)\left(4m^2+1\right)-2m^2\left(x_1-x_2\right)-\left(x_1-x_2\right)\)
\(=-\dfrac{2}{3}\left(m^2+1\right)\left(x_1-x_2\right)\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4\left(m^2+1\right)\)
Khoảng cách 2 cực trị:
\(f=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=\sqrt{\left(x_1-x_2\right)^2+\dfrac{4}{9}\left(m^4+2m^2+1\right)\left(x_1-x_2\right)^2}\)
\(=\sqrt{4\left(m^2+1\right)+\dfrac{16}{9}\left(m^2+1\right)^3}\ge\sqrt{4+\dfrac{16}{9}}\)
Dấu "=" xảy ra khi \(m=0\)