\(g'\left(x\right)=\left(2x-2\right).f'\left(x^2-2x-4\right)\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\f'\left(x^2-2x-4\right)=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=-2\\x^2-2x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\pm\sqrt{3}\\x=1\pm\sqrt{5}\end{matrix}\right.\)
Tất cả các nghiệm đều là bội đơn nên chúng đều là cực trị
Lập bảng xét dấu \(g'\left(x\right)\) với chú ý từ BBT của \(f'\left(x\right)\) ta thấy hệ số của số hạng có mũ cao nhất của hàm chắc chắn mang dấu dương nên trên miền chứa \(+\infty\) thì \(g'\left(x\right)\) mang dấu dương
Nhìn vào BBT thấy ngay hàm số có 3 cực tiểu, 2 cực đại