Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nguyễn Linh Chi

Cho hàm số y=f(x). Hàm số f'(x) có đồ thị như hĩnh vẽ bên:. Biết f(0) = -4, tìm số điể cực đại của hàm số y= 2.f (f(x)) - [ f(x)]2undefined

Nguyễn Việt Lâm
20 tháng 8 2021 lúc 20:58

\(y'=2f'\left(x\right).f'\left(f\left(x\right)\right)-2f'\left(x\right).f\left(x\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f'\left(f\left(x\right)\right)=f\left(x\right)\end{matrix}\right.\)

Từ đồ thị ta có \(f'\left(x\right)=0\Rightarrow x=x_1\) với \(-4< x_1< 0\)

Xét phương trình \(f'\left(f\left(x\right)\right)=f\left(x\right)\), đặt \(f\left(x\right)=t\Rightarrow f'\left(t\right)=t\)

Vẽ đường thẳng \(y=t\) (màu đỏ) lên cùng đồ thị \(y=f'\left(t\right)\) như hình vẽ:

undefined

Ta thấy 2 đồ thị cắt nhau tại 3 điểm: \(t=\left\{-4;1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-4\\f\left(x\right)=1\\f\left(x\right)=4\end{matrix}\right.\) (1)

Mặt khác từ đồ thị \(f'\left(x\right)\) và \(f\left(0\right)=-4\) ta được BBT của \(f\left(x\right)\) có dạng:

undefined

Từ đó ta thấy các đường thẳng \(y=k\ge-4\) luôn cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Hệ (1) có 6 nghiệm phân biệt (trong đó 3 nghiệm nhỏ hơn \(x_1\) và 3 nghiệm lớn hơn \(x_1\))

Từ đó ta có dấu của y' như sau:

undefined

Có 3 lần y' đổi dấu từ dương sang âm nên hàm có 3 cực đại

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 21:47

Chọn A


Các câu hỏi tương tự
Chú ếch con
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lê Thành Công
Xem chi tiết
Phương Thảo
Xem chi tiết
Tâm Cao
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Minh Nguyệt
Xem chi tiết