Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Tìm tất cả hàm số \(f:R\rightarrow R\) thỏa mãn\(f\left(f\left(x+y\right).f\left(x-y\right)\right)=x^2-y.f\left(y\right)\) \(\forall x,y\in R\)
làm giúp em câu này với ạ
Cho hàm số y= f(x) có đạo hàm liên tục trên tập xác định, sao cho f(1)=-12 và
(f'(x))2 + 4f(x) +8= 8x2 +16x , hàm số g(x)= f(x) +x3 +4x -1. Tính giá trị cực đại của hàm g(x)?
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6
Bài 1: Hàm số f(x) có đạo hàm trên R và f'(x) > 0 \(\forall\) x \(\in\) (0; +\(\infty\)), biết f(1)=2. Khẳng định nào sau đây có thể xảy ra ?
A.f(2)=1 B. f(2)+f(3)=4
C. f(2016)>f(2017) D. f(-1)=4
giúp em với
Cho hàm số y=f(x) có đạo hàm f'(x)= (x^2-1)*(x+1)*(5-x). mệnh đề nào sau đây đúng:
A. f(1)<f(4)<f(2)
B. f(1)<f(2)<f(4)
C. f(2)<f(1)<f(4)
D. f(4)<f2<f1
Cho tam thức f(x)=\(x^2+bx+c\) chứng minh rằng nếu phương trình f(x)=x có hai nghiệm phân biệt và \(b^2-2b-3>4c\) thì phương trình f[f(x)]=x có 4 nghiệm phân biệt
Chứng minh hàm số \(f\left(x\right)=x-sinx\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)