\(f\left(x\right)=\dfrac{x^2-1+1}{1-x}=-\left(x+1\right)-\dfrac{1}{x-1}\)
Sau 2 lần đạo hàm thì \(-\left(x+1\right)\) sẽ về 0 nên ta có:
\(f^{\left(n\right)}\left(x\right)=\dfrac{\left(-1\right)^{n+1}.n!}{\left(x-1\right)^{n+1}}\) với \(n\ge3\)
\(f\left(x\right)=\dfrac{x^2-1+1}{1-x}=-\left(x+1\right)-\dfrac{1}{x-1}\)
Sau 2 lần đạo hàm thì \(-\left(x+1\right)\) sẽ về 0 nên ta có:
\(f^{\left(n\right)}\left(x\right)=\dfrac{\left(-1\right)^{n+1}.n!}{\left(x-1\right)^{n+1}}\) với \(n\ge3\)
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6
cho hàm số y = f(x) liên tục trên R sao cho \(\max\limits_{\left[-8;\dfrac{8}{3}\right]}=5\). xét hàm số \(g\left(x\right)=2f\left(\dfrac{1}{3}x^3-x^2-3x+1\right)+m\). tìm tất cả các giá trị thực của tham số m để \(\max\limits_{\left[-2;4\right]}g\left(x\right)=-20\)
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số: \(y=-\dfrac{x^3}{3}+\left(a-1\right)x^2+\left(a+3\right)x-4\). Tìm a để hàm số đồng biến trên khoảng (0;3)
tính đạo hàm của các hàm số sau
a, y=\(-\dfrac{3x^4}{8}+\dfrac{2x^3}{5}-\dfrac{x^2}{2}+5x-2021\)
b, y= \(\sqrt{x^2+4x+5}\)
c, y=\(\sqrt[3]{3x-2}\)
d, y=(2x-1)\(\sqrt{x+2}\)
e, y=\(sin^3\left(\dfrac{\pi}{3}-5x\right)\)
g, y=\(cot^{^4}\left(\dfrac{\pi}{6}-3x\right)\)
Chứng minh hàm số \(f\left(x\right)=x-sinx\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
a) khảo sát và vẽ đồ thị hàm số \(y=\dfrac{2x-3}{x+2}\)
b) khảo sát và vẽ đồ thị hàm số \(y=\left|\dfrac{2x-3}{x+2}\right|\)
c) khảo sát và vẽ đồ thị hàm số \(y=\dfrac{2x-3}{\left|x+2\right|}\)
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
làm giúp em câu này với ạ
Cho hàm số y= f(x) có đạo hàm liên tục trên tập xác định, sao cho f(1)=-12 và
(f'(x))2 + 4f(x) +8= 8x2 +16x , hàm số g(x)= f(x) +x3 +4x -1. Tính giá trị cực đại của hàm g(x)?