\(B\backslash A=\left\{1;3;4\right\}\)
Tập X được tạo ra bằng cách lấy hợp của tập \(B\backslash A\) với các tập con của A
Mà tập A có \(2^2=4\) tập con nên có 4 tập X thỏa mãn
\(B\backslash A=\left\{1;3;4\right\}\)
Tập X được tạo ra bằng cách lấy hợp của tập \(B\backslash A\) với các tập con của A
Mà tập A có \(2^2=4\) tập con nên có 4 tập X thỏa mãn
Cho hai tập hợp \(B=\left\{0;1;2;3;4;\right\}\) và \(A=\left\{0;1\right\}\). Số tập hợp X thỏa mãn \(X\subset C_BA\) là bao nhiêu
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)
Cho hai tập hợp \(A=\left\{1;2;3\right\}\) và \(B=\left\{1;2;3;4;5;\right\}\). Số tập hợp C thỏa mãn \(A\cup C=B\). ( Kèm lời giải )
Cho A={\(x\in Z||x|\le\dfrac{10}{3}\)}
B=\(\left\{x\in R\left|\left(x^2-4\right)\times\left(16-x^2\right)\right|=0\right\}\)
1, Tìm \(A\cap B\)\(,A\cup B\)A-B,B-A
2, Tìm tất cả tập X thỏa mãn : \(X\in A\), \(X\in B\)
3, Tìm tập hợp Y thỏa mãn :\(Y\subset A,Y\cap B\ne\varnothing\)
4, Tìm số tập hợp D thỏa mãn : \(D\subset A,D\subseteq B\)
Cho tập hợp \(A=\left\{a;b;c\right\}\) và \(B=\left\{a;b;c;d;e\right\}\). Có bao nhiêu tập hợp X thỏa mãn \(A\subset X\subset B\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Cho \(A=\left\{x\in R|x^2-7x+6=0\right\}\)
\(B=\left\{x\in Z|\left|x\right|< 4\right\}\)
Xác định là tập hợp : \(A\cup B;A\cap B;\) A \B: B \ A
Tìm \(A\cap B;A\cup B\);A\B;B\A của các tập hợp sau:
a) A là tập hợp các số tự nhiên lẻ không lớn hơn 10; \(B=\left\{x\in Z|x\le6,x\ne0\right\}\).
b) A=(8;15), B=[10;2011]
c) \(A=\left\{2;+\infty\right\},B=\left\{-1;3\right\}\).