\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)
\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)
\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)
Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)