2) Viết nhầm thì phải, vế phải là 12 nhỉ
\(x\left(x-1\right)+y\left(y-1\right)=x^2+y^2-\left(x+y\right)\ge\dfrac{\left(x+y\right)^2}{2}-\left(x+y\right)\ge\dfrac{6^2}{2}-6=12\)
1) \(x\ge2y>0\Rightarrow x^3\ge8y^3\)
\(P=\dfrac{x^2+y^2}{xy}=\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{4y^2}{4xy}\ge5\sqrt[5]{\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{4y^2}{4xy}}=5\sqrt[5]{\dfrac{x^3}{256y^3}}\ge5\sqrt[5]{\dfrac{8y^3}{256y^3}}=5\sqrt[5]{\dfrac{1}{32}}=\dfrac{5}{2}\)