a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
xét hai số thực dương thỏa mãn a2 + b2 \(\le2\). Chứng minh rằng \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\le\dfrac{2}{1+ab}\)
Cho 3 số a,b,c thỏa mãn \(a+b+c=2017\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2017}\)
Chứng minh rằng ít nhất một trong ba số a,b,c bằng 2017
Cho a,b,c là các số hữu tỉ thỏa abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\)
Cmr ít nhất 1 trong 3 số a,b,x là bình phương 1 số hữu tỉ
Bài 1: Cho a,b,c > 0. Chứng minh tất cả các bất đẳng thức sau
a. (2a+2b)\(\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\)≥ 2
b. a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Bài 2: Cho x; y thỏa mãn \(x^2+y^2-4x+3=0\). Đặt M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(P=x^2+y^2\).
Tính giá trị M+m
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
cho 2 số dương a,b thỏa mãn \(\dfrac{a+b}{a}=\dfrac{a}{b}\) , chứng minh \(x=\dfrac{a}{b}\)là 1 nghiệm của pt \(x^2-x-1\)
Cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\). Tìm GTNN của
a) A = xy
b) B = x + y
Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=1\)
chứng minh rằng \(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)