Cho góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD
a)chứng minh AD=BC
b)gọi E là giao điểm AD và BC chứng minh tam giác EAC= tam giác EBD
c) chứng minh OE là phân giác của góc xOy
d) Chứng minh: EO+EC+ED<2OC
Giải giúp e câu d với ạ. Em cảm ơn ạ!
a) Ta có: \(\left\{{}\begin{matrix}OA+AC=OC\\OB+BD=OD\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}OA=OB\left(GT\right)\\AC=BD\left(GT\right)\end{matrix}\right.\)
=> OC = OD
Xét ΔOAD và ΔOBC ta có:
OA = OB (GT)
\(\widehat{xOy}:chung\)
OD = OC (GT)
=> ΔOAD = ΔOBC (c - g - c)
=> AD = BC (2 cạnh tương ứng)
b) Ta có: ΔOAD = ΔOBC (cmt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAD}=\widehat{OBC}\\\widehat{ODA}=\widehat{OCB}\end{matrix}\right.\) (2 cạnh tương ứng)
Có: \(\left\{{}\begin{matrix}\widehat{OAD}+\widehat{EAC}=180^0\\\widehat{OBC}+\widehat{EBD}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{OAD}=\widehat{OBC}\left(cmt\right)\)
\(\Rightarrow\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD ta có:
\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)
AC = BD (GT)
\(\widehat{ODA}=\widehat{OCB}\left(cmt\right)\)
=> ΔEAC = ΔEBD (g - c - g)
c) Ta có: ΔEAC = ΔEBD (cmt)
=> AE = EB (2 canhj tương ứng)
Xét ΔOAE và ΔOBE ta có:
OA = OB (GT)
\(\widehat{OAD}=\widehat{OBC}\left(cmt\right)\)
AE = EB (cmt)
=> ΔOAE = ΔOBE (c - g - c)
\(\Rightarrow\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của góc AOB
Hay: OE là phân giác của góc xOy
P/s: Lỡ làm mấy câu trc rồi thôi thì đăng lên cho mấy bn nào đến sau mà tìm mấy câu kia vậy :((