Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lưu tuấn anh

Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD

a) CM: AD = BC

b) Gọi E là giao điểm AD và BC. Cm tam giác EAC = tam giác EBD

c) CM: OE là tia phân giác của góc xOy

Nguyễn Thanh Hằng
23 tháng 11 2018 lúc 17:11

O A B C D x y E

a/ Ta có :

+) OA + AC = OC (do A nằm giữa O và C)

+) OB + BD = OD (do B nằm giữa O và D)

Mà : OA = OB; AC = BD

\(\Leftrightarrow OC=OD\)

Xét \(\Delta OCB;\Delta ODA\) có :

\(\left\{{}\begin{matrix}\widehat{xOy}chung\\OC=OD\\OB=OA\end{matrix}\right.\)

\(\Leftrightarrow\Delta OCB=\Delta ODA\left(c-g-c\right)\)

\(\Leftrightarrow AD=BC\left(đpcm\right)\)

b/ Ta có :

\(\Delta OCB=\Delta ODA\left(ýa\right)\)

\(\Leftrightarrow\widehat{OCB}=\widehat{ODA}\) hay \(\widehat{ACE}=\widehat{BDE}\)

\(\widehat{OBC}=\widehat{OAD}\)

Lại có :

\(\left\{{}\begin{matrix}\widehat{OBC}+\widehat{EBD}=180^0\\\widehat{OAD}+\widehat{EBC}=180^0\end{matrix}\right.\)

\(\Leftrightarrow\widehat{EBD}=\widehat{EAC}\)

Xét \(\Delta EAC;\Delta EBD\) có :

\(\left\{{}\begin{matrix}BD=AC\\\widehat{EBD}=\widehat{EAC}\\\widehat{BDE}=\widehat{ACE}\end{matrix}\right.\)

\(\Leftrightarrow\Delta EAC=\Delta EBD\left(g-c-g\right)\)

c/ \(\Delta EAC=\Delta EBD\left(ýa\right)\)

\(\Leftrightarrow BE=AE\)

Xét \(\Delta BOE;\Delta AOE\) có :

\(\left\{{}\begin{matrix}OA=OB\\OEchung\\BE=AE\end{matrix}\right.\)

\(\Leftrightarrow\Delta BOE=\Delta AOE\left(c-c-c\right)\)

\(\Leftrightarrow\widehat{BOE}=\widehat{AOE}\)

\(\Leftrightarrow OE\) la tia phân giác của \(\widehat{xOy}\left(đpcm\right)\)

Miinhhoa
23 tháng 11 2018 lúc 17:12

O y x B A C D

a, Ta có : OB + BD = OD

OA + AC = OC

mà OB = OA ( gt )

BD = AC ( gt ) => OD = OC

Xét Δ ODA và Δ OBC có :

OA = OB ( gt )

OD = OC ( cm trên )

\(\widehat{O}\) là góc chung

=> Δ ODA = Δ OBC ( trg hợp c-g-c)

=> BC = AD ( hai cạnh tương ứng )

b, Phần này tự vẽ nhé !! :)

Xét Δ EAC và Δ EBD có :

BD = AC ( gt )

\(\widehat{BDE} = \widehat{ACE}\) ( do Δ ODA = Δ OBC )

\(\widehat{AEC} = \widehat{BED}\) ( hai góc đối đỉnh )

=> Δ EAC và Δ EBD ( trg hợp g-c-g )

c,Xét Δ OBE và Δ OAE có :

OB = OA ( gt )

OE là cạnh chung

BE = EA ( do Δ EAC = Δ EBD )

=> Δ OBE và Δ OAE

=> \(\widehat{BOE} = \widehat{EOA}\) ( hai góc tương ứng )

=> OE là tia phân giác của \(\widehat{xOy}\)


Các câu hỏi tương tự
yen vu
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
hello hello
Xem chi tiết
Phát Bùi
Xem chi tiết
Henry Anh
Xem chi tiết
Phương Thảo
Xem chi tiết
ARMY BTS
Xem chi tiết
lưu tuấn anh
Xem chi tiết
hello hello
Xem chi tiết