Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thu Sương

Cho G=\(\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{1-\frac{2}{x}+\frac{1}{x^2}}}\)

a. Rút gọn G.

b. Tìm giá trị nguyên lớn hơn 2 của x để G nhận giá trị nguyên.

Trần Thanh Phương
8 tháng 7 2019 lúc 20:26

a) \(G=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{1-\frac{2}{x}+\frac{1}{x^2}}}\)

Tử : \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1\)

Mẫu : \(\sqrt{1-\frac{2}{x}+\frac{1}{x^2}}=\sqrt{\left(\frac{1}{x}-1\right)^2}=\left|\frac{1}{x}-1\right|\)

\(\Rightarrow G=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{\left|\frac{1}{x}-1\right|}\)

b) \(x>2\Leftrightarrow\left\{{}\begin{matrix}x-1>1\Leftrightarrow\sqrt{x-1}>1\\\frac{1}{x}< 1\end{matrix}\right.\)

\(\Rightarrow G=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{1-\frac{1}{x}}\)

\(G=\frac{2\sqrt{x-1}}{\frac{x-1}{x}}=\frac{2x\sqrt{x-1}}{x-1}=\frac{2x}{\sqrt{x-1}}\)

Để G nguyên thì \(2x⋮\sqrt{x-1}\)

\(\Leftrightarrow2x-2+2⋮\sqrt{x-1}\)

\(\Leftrightarrow2\left(x-1\right)+2⋮\sqrt{x-1}\)

Ta có \(2\left(x-1\right)⋮\sqrt{x-1}\)

\(\Rightarrow2⋮\sqrt{x-1}\)

\(\Rightarrow\sqrt{x-1}\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Leftrightarrow x-1\in\left\{1;4\right\}\)

\(\Leftrightarrow x\in\left\{2;5\right\}\)( thỏa )

Vậy....


Các câu hỏi tương tự
Đạt Nguyễn Tiến
Xem chi tiết
lilyvuivui
Xem chi tiết
Azaki
Xem chi tiết
Võ Tiến Dũng
Xem chi tiết
giang thị kim thư
Xem chi tiết
Dương Taurus
Xem chi tiết
THCS Phú Gia 8E
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Thành Trương
Xem chi tiết