Giải:
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{b^2+c^2}\) (1)
Mà \(\frac{a}{c}.\frac{c}{b}=\frac{a}{b}=\frac{a^2}{b^2}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)
Ta có:\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\)(đpcm)