Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\begin{cases}a=ck\\c=bk\Rightarrow b=\frac{c}{k}\end{cases}\)
\(VT=\frac{c^2k^2+c^2}{\frac{c^2}{k^2}+c^2}=k^2\)
\(VP=\frac{a}{b}=\frac{ck}{\frac{c}{k}}=k^2\)
=> VT=VP (dpcm)
theo đề bài ta có:
\(\frac{a}{c}=\frac{c}{b}\) => a.b=c2
khi đó :
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
vậy khi \(\frac{a}{c}=\frac{c}{b}\) thì \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)