Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE
Cho A B C có AB B = AC , là trung điểm của BC cắt đường thẳng AB tại E. Trên tia đối của tia MA lấy điểm N Sao cho MN =MA Chứng minh rằng
a) AB = NC;AB//NC
b)AM Vuông góc với BC
C)Lấy H thuộc AB và và K thuộc NC sao cho BH=CK. CMR H,M,K thẳng hàng
Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N, sao cho BM=CN.
a) Cm: ΔABM=ΔACN
b) Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN). Cm: AH=AK
c) Gọi O là giao điểm của BH và KC. ΔOBC là Δ gì? Vì sao?
cho tam giác nhọn ABC ( AB=AC ). gọi M là trung điểm BC. trên tia đối của tia MA lấy D sao cho MD=MA
a, chứng minh Δ ABM= ΔDCM
b, kẻ AH vuông góc với BC ( Hϵ BC ). vẽ E sao cho H là trung điểm của EA. chứng minh BE=CD
Cho ∆ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Chứng minh AM vuông góc với BC.
c) Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
Chứng minh CD//AB.
Cho tam giác ABC. M là trung điểm của BC.
a, Chứng minh tam giác ABM = tam giác ACM
b, Chứng minh AM là phân giác của góc BAC và AM vuông BC
c, Lấy D là 1 điểm bất kỳ trên AM. Chứng minh DB = DC
d, Lấy điểm H thuộc AB, K thuộc AC sao cho BH = CK. Chứng minh HK // BC
Cho ABC có AB = AC . Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Chứng minh ABM = DCM b) Chứng minh AB//DC
c) Chứng minh AM là phân giác của góc A. d) Chứng minh rằng AM là trung trực của BC.
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.