Cho tam giác ABC vuông tại A.Trên cạnh BC lấy M là trung điểm BC.Trên tia
đối tia MA lấy N sao cho MN= MA. CMR:
a. Tam giác ABM = Tam giác NCM
b. Chứng minh: NC vuông góc với AC.
c. Trên cạnh AB lấy K. Trên cạnh NC lấy H sao cho BK=HC.
Chứng minh: K,M,H thẳng hàng
Cần gấp ( Kèm hình)
ho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm K sao cho BK=BA. Gọi M là trung điểm của đoạn thẳng AK. a) Chứng minh: ∆AMB=∆KMB b) Đường thẳng BM cắt đường thẳng AC tại D. Chứng minh: DK vuông góc với BC. c) Trên tia đối của tia AB lấy điểm H sao cho ah=kc chứng minhh d k thẳng hàng
Cho vuông tại A (AB<AC). Vẽ AH (HBC). Lấy điểm D thuộc tia HC sao cho HD = HB.
a) Chứng minh AB = AD
b) Đường thẳng qua D vuông góc với AC cắt AH tại E và cắt AC tại K. Chứng minh H là trung điểm của đoạn thẳng AE
c) Lấy điểm F thuộc đoạn thẳng EC sao cho CF = CK. Chứng minh A, D, F thẳng hàng
Bài 4. (3 điểm):
Cho ΔABC vuông tại A có AB < AC. Đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho DM = MA.
a) Chứng minh ΔAMC = ΔDMB.
b) Biết AB = 5cm, BC = 13cm. Tính AC.
c) Qua M kẻ đường thẳng MN vuông góc với AB tại N; Kẻ MK vuông góc với AC tại K. Chứng minh rằng CN, AM, BK đồng quy tại một điểm
Cho ΔABC vuông tại A có AB < AC . Trên BC lấy điểm M sao cho BM = AB . Gọi E là trung điểm của AM
a, ΔABE = ΔMBE
b, Gọi K là giao điểm của BE và AC . Chứng minh KM ⊥ BC
c, Qua M vẽ đường thẳng song song với AC và cắt BK tại F . Tren đoạn thẳng KC lấy điểm Q sao cho KQ = MF . Chứng minh : góc ABK = góc QMC
7.Cho ABC, K là trung điểm của AB , E là trung điểm của AC . a) Trên tia đối của tia KC lấy điểm M sao cho MK KC = . Chứng minh AM=BC. b) Trên tia đối của tia EB lấy điểm N sao cho EN EB = . Chứng minh AN=BC c) Chứng minh A, M, N thẳng hàng.
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.