a: góc CAD+góc BAD=90 độ
gócCDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
HD/BD=AH/AB
DC/BC=AC/BC
mà AH/AB=AC/CB
nên DH/BD=DC/BC
=>DH*BC=BD*DC
a: góc CAD+góc BAD=90 độ
gócCDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
HD/BD=AH/AB
DC/BC=AC/BC
mà AH/AB=AC/CB
nên DH/BD=DC/BC
=>DH*BC=BD*DC
c) Chứng minh: \(tan^3C=\dfrac{BE}{CF}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH.
a) Tính BC, góc B, góc C (góc làm tròn đến phút)
b) Tính BH, AH
Gọi E, F là hình chiếu của H lần lượt lên cạnh AB, AC. Chứng minh tam giác ABC đồng dạng AFE
bài 1. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và AH là đường cao
a/ Tính HB,HC
b/ Gọi E,F lần lượt là hình chiếu của H trên AC, AB, CMR: AF XAB=AE X AC; AH mủ 3= BF x CE x BC
c/ tính EF
d/ Gọi AD là phân giác góc BAC, D thuộc BC. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại B, có AB=15cm, AC= 25cm, kẻ đường cao BH
a/ Tính AH, HC, BC
b/ Gọi E,F lần lượt là hình chiếu của H trên AB, BC. tứ giác BEHF là hình gì? vì sao
c/ Gọi O là giao điểm BH và EF. CMR HA X HC= 4BO bình phương và BE X BA= BF X BC
d/ CMR BEF=BCAe/ gọi M là trung điểm AC. CMR: BM vuông góc EF
giúp mình nha các bạn, làm đầy đủ giúp mình ạ mình cảm ơn mình cần gấp lắm ạ
Bài 2: Cho ΔABC có AB=6cm, AC=8cm, BC=10c, Kẻ đường cao AH của ΔABC.
a) Tính độ dài AH và BH
b)AH=BC.sinB.cosB
c) lấy điểm M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là E và K. Chứng minh : \(\dfrac{1}{AM^2}+\dfrac{1}{AK^2+AE^2}\)
d) Hỏi M ở vị trí nào trên cạnh BC thì EK có độ dài nhỏ nhất
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC