\(P=6x^2-x^3+6y^2-y^3+\frac{x+y}{xy}-x^2y-xy^2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\le6\left(x^2-xy+y^2\right)\)
\(\Rightarrow-\left(x^3+y^3\right)\ge-6x^2-6y^2+6xy\)
\(\Rightarrow P\ge6xy+\frac{x+y}{xy}-xy\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{xy}=\frac{1}{y}+\frac{1}{x}\ge\frac{4}{x+y}\ge\frac{2}{3}\)
\("="\Leftrightarrow x=y=3\)
Bài của bạn Hanako-kun đúng rồi. Dưới đây là một cách biến đổi khác đơn giản hơn, nhưng hướng làm thì tương tự.
Do $x+y\leq 6\Rightarrow 6-x\geq y; 6-y\geq x$
$\Rightarrow x^2(6-x)\geq x^2y; y^2(6-y)\geq xy^2$
$\Rightarrow P\geq x^2y+xy^2+(x+y)\left(\frac{1}{xy}-xy\right)=\frac{x+y}{xy}$
Mà $\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\geq \frac{4}{6}=\frac{2}{3}$ theo BĐT Cauchy-Schwarz.
Do đó $P_{\min}=\frac{2}{3}$. Giá trị này đạt tại $x=y=3$