\(N=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+3\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(N\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+3.\frac{9}{2\left(a+b+c\right)}=\frac{9}{6}+\frac{27}{6}=6\)
Dấu "=" khi \(a=b=c=1\)
\(N=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+3\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(N\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+3.\frac{9}{2\left(a+b+c\right)}=\frac{9}{6}+\frac{27}{6}=6\)
Dấu "=" khi \(a=b=c=1\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
cho a,b,c>0; p=a+b+c Chứng minh \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c là số thực dương thỏa a+b+c=3 . Chứng minh \(\frac{1}{2 +a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
Cho 3 số thực a, b, c thỏa 1 ≤ a;b;c ≤ 2.
Chứng minh: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\le7\)
Cho các số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\).Chứng minh :
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\)≥ a+b+c
cho sac số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\). chứng minh \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{ca^2}{c+a^2}\ge a+b+c\)
Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
Cho các số thực a,b,c thay đổi thỏa mãn điều kiện: \(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\)
Chứng minh rằng:
\(A=\frac{a^4b}{a^2+1}+\frac{b^4c}{b^1+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Chứng minh \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là những số nguyên chẵn khác 0 thỏa mãn điều kiện :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)chứng minh rằng \(a^3+b^3+c^3\) chia hết cho 24