Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

Cho các số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\).Chứng minh :

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\)≥ a+b+c

Nguyễn Thành Trương
18 tháng 7 2019 lúc 20:46

Áp dụng bđt cô-si, ta có: \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)

=>\(\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}\)

CMTT: Khi đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\)

Áp dụng bđt Sơ-vác, ta có:

\(\dfrac{4a^4}{a^4+2a^2b^2+a^2}+\dfrac{4b^4}{b^4+2b^2c^2+b^2}+\dfrac{4c^4}{c^4+2c^2a^2+c^2}\ge\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=\dfrac{4.3^2}{3^2+3}=3\)

Do đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\ge3\)

Vì \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

=>\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge a+b+c\)

Dấu "=" xảy ra khi a=b=c=1

=>ĐPCM


Các câu hỏi tương tự
Lê Đình Quân
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
vũ manh dũng
Xem chi tiết
phạm thị thu phương
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Lê Minh Triết
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Agami Raito
Xem chi tiết