Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Cho a, b, c dương thỏa a + b + c = 3. Chứng minh:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
cho a,b,c là các số dương thỏa mãn : a+b+c=3
cmr : \(\frac{1}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho các số thực dương a, b,c t/m
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\) Chứng minh
\(a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}\)
a)chứng minh rằng: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\) với mọi giá trị của a,b
b) cho các số dương a,b,c >0 cmr \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\)
Cho a, b, c dương thỏa a + b + c = 3. Cm: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
cho a,b,c>0; p=a+b+c Chứng minh \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c là số thực dương thỏa a+b+c=3 . Chứng minh \(\frac{1}{2 +a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
cho a b c >0 thỏa mãn a2+b2+c2=1. chứng minh \(\frac{a^2}{1-a^2}+\frac{b}{1-b^2}-\frac{c^2}{1-c^2}\ge\frac{3\sqrt{3}}{2\left(a+b+c\right)}\)