Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Chứng minh \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Cho a, b, c dương thỏa a + b + c = 3. Cm: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
cho a b c >0 thỏa mãn a2+b2+c2=1. chứng minh \(\frac{a^2}{1-a^2}+\frac{b}{1-b^2}-\frac{c^2}{1-c^2}\ge\frac{3\sqrt{3}}{2\left(a+b+c\right)}\)
cho a,b,c là các số dương thỏa mãn : a+b+c=3
cmr : \(\frac{1}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a,b,c>0; p=a+b+c Chứng minh \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c là số thực dương thỏa a+b+c=3 . Chứng minh \(\frac{1}{2 +a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
cho sac số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\). chứng minh \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{ca^2}{c+a^2}\ge a+b+c\)
Cho các số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\).Chứng minh :
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\)≥ a+b+c
a)chứng minh rằng: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\) với mọi giá trị của a,b
b) cho các số dương a,b,c >0 cmr \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)