Lời giải:
Áp dụng BĐT AM-GM: \(ab\leq \frac{a^2+b^2}{2}\Rightarrow a^2+ab+b^2\leq \frac{3}{2}(a^2+b^2)\)
\(\Rightarrow \frac{a^3}{a^2+ab+b^2}\geq \frac{2}{3}.\frac{a^3}{a^2+b^2}=\frac{2}{3}\left(a-\frac{ab^2}{a^2+b^2}\right)\)
Mà cũng theo BĐT AM-GM: \(\frac{ab^2}{a^2+b^2}\leq \frac{ab^2}{2ab}=\frac{b}{2}\)
\(\Rightarrow \frac{a^3}{a^2+ab+b^2}\geq \frac{2}{3}\left(a-\frac{ab^2}{a^2+b^2}\right)\geq \frac{2}{3}(a-\frac{b}{2})\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\geq \frac{2}{3}(a-\frac{b}{2})+\frac{2}{3}(b-\frac{c}{2})+\frac{2}{3}(c-\frac{a}{2})=\frac{a+b+c}{3}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Ta có:\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab\left(a+b\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)
Lại có:\(a^2+ab+b^2\ge3ab\)
\(\Rightarrow a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)
\(\Rightarrow\sum\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
"="<=>a=b=c