a: \(P=\dfrac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\right]\)
\(=\dfrac{\sqrt{a}\left(a-1\right)^2}{a+1}\cdot\dfrac{1}{\left(a-1\right)^2}=\dfrac{\sqrt{a}}{a+1}\)
b: \(P-\dfrac{1}{2}=\dfrac{\sqrt{a}}{a+1}-\dfrac{1}{2}=\dfrac{2\sqrt{a}-a-1}{2\left(a+1\right)}=\dfrac{-\left(\sqrt{a}-1\right)^2}{2\left(a+1\right)}\)
\(\Leftrightarrow a\left(P-\dfrac{1}{2}\right)< 0\)