1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
Cho biểu thức P = \(\dfrac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left(\left(\dfrac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\right)\)
a) Rút gọn P.
b) Xét dấu của biểu thức M = \(a\left(P-0,5\right)\)
rút gọn biểu thức
\(\left(\sqrt{a+1}-\dfrac{1}{\sqrt{a+1}}\right)\left(\dfrac{a^2+3\sqrt{a+1}-2a}{a}+2-a\right)\) với a>-1;a khác 0
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
Cho biểu thức P = \(\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\) với a>0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với giá trị nào của a thì P = 3
Cho biểu thức : P = \(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(\dfrac{1}{\sqrt{a}}+1\right)\) với a >0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với những giá trị nảo của a thì P >\(\dfrac{1}{2}\)
cho biểu thức x=\(\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)
a.rút gọn biểu thức
b.xác định a để biểu thức A>\(\dfrac{1}{2}\)
Cho biểu thức \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và \(a\ne b\) . Rút gọn M và tính giá trị biểu thức M biết \(\left(1-a\right).\left(1-b\right)+2\sqrt{ab}=1\)