Lời giải:
a)
\(A=\left[\frac{4\sqrt{y}(\sqrt{y}-2)}{(2+\sqrt{y})(\sqrt{y}-2)}-\frac{8y}{(\sqrt{y}-2)(\sqrt{y}+2)}\right]:\left[\frac{\sqrt{y}-1}{\sqrt{y}(\sqrt{y}-2)}-\frac{2(\sqrt{y}-2)}{\sqrt{y}(\sqrt{y}-2)}\right]\)
\(=\frac{-4y-8\sqrt{y}}{(\sqrt{y}+2)(\sqrt{y}-2)}: \frac{3-\sqrt{y}}{\sqrt{y}(\sqrt{y}-2)}\)
\(=\frac{-4\sqrt{y}(\sqrt{y}+2)}{(\sqrt{y}+2)(\sqrt{y}-2)}.\frac{\sqrt{y}(\sqrt{y}-2)}{3-\sqrt{y}}\)
\(=\frac{4y}{\sqrt{y}-3}\)
b) Với \(y>0; y\neq 4; 9\):
Để \(A=2\Leftrightarrow \frac{4y}{\sqrt{y}-3}=2\Leftrightarrow 4y=2\sqrt{y}-6\)
\(\Leftrightarrow 4y-2\sqrt{y}=-6\)
\(\Leftrightarrow 3y+(\sqrt{y}-1)^2=-5< 0\) (vô lý với mọi $y>0$)
Do đó không tồn tại $y$ để $A=2$