Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
Rút gọn:
\(A=\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) với \(x\ge0;x\ne1\)
\(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) với \(x>0;x\ne1\)
Cho biểu thức: \(P=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) với ( \(x\ge0;x\ne1\) )
a) Rút gọn biểu thức trên
b) Chứng minh rằng P>0 với mọi \(x\ge0\) và \(x\ne1\)
Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\), \(x\ge0,x\ne1\)
a) Rút gọn biểu thức A.
b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)
c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.
Cho biểu thức \(A=\left(\dfrac{2x+\sqrt{x}}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{1+\sqrt{x}+x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\) với \(x\ge0;x\ne1\)
a) Rút gọn A
b) Tìm \(x\) để \(A-2x\) đạt GTLN
Rút gọn:
\(B=\left(2+\frac{x-2\sqrt{x}+1}{1-\sqrt{x}}\right).\left(2+\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}\right)\)với \(x\ge0;x\ne1\)
\(x\ge0;x\ne1.\)Cho các biểu thức sau:
A= \(\frac{2\sqrt{x}+1}{3\sqrt{x}+1};\)
B= \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
a, Tính giá trị của biểu thức A khi x=\(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\)
b, Rút gọn B c, tìm x để \(\frac{B}{A}>2\)
rút gọn biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
với x>0,\(x\ne1;x\ne4\)
rút gọn biểu thức:
\(p=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)với \(x>0;x\ne1;x\ne4\)