Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Le Chi

Cho ba số dương a,b,c có tổng bằng 1. Chứng minh rằng 1/a + 1/b + 1/c lớn hơn hoặc bằng 9

hattori heiji
28 tháng 3 2018 lúc 6:29

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

Phạm Nguyễn Tất Đạt
28 tháng 3 2018 lúc 18:42

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)


Các câu hỏi tương tự
Nguyen Nguyen
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Le Chi
Xem chi tiết
Le Chi
Xem chi tiết
Họ Không
Xem chi tiết
Le Chi
Xem chi tiết
Kamato Heiji
Xem chi tiết
Ngô Vân Khánh
Xem chi tiết
Achana
Xem chi tiết