Vào đây đi:
https://hoc24.vn/hoi-dap/question/32718.html
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\dfrac{a}{bc+1}\le\dfrac{a}{b+c}\le\dfrac{a}{a+b}\left(1\right)\)
Tương tự ta cũng có:
\(\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\le\dfrac{b}{a+b}\left(2\right)\)
\(\dfrac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta đươc:
\(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a+b}{a+b}+1=2\)
Vậy \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\) (Đpcm)