a) TXĐ: \(\left\{x,y\in R\left|x\ne\pm y\right|x,y\ne0\right\}\)
b) \(A=\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
\(=\left(\frac{x}{y\left(x+y\right)}-\frac{x-y}{x\left(x+y\right)}\right):\left(\frac{y^2}{x\left(x^2-y^2\right)}+\frac{1}{x+y}\right)\cdot\frac{y}{x}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}\cdot\frac{x\left(x^2-y^2\right)}{x^2-xy+y^2}\cdot\frac{y}{x}=\frac{x-y}{y}\cdot\frac{y}{x}=\frac{x-y}{x}\)
Ta có: \(A>1\Leftrightarrow x-y>x\Leftrightarrow y< 0\)