a: \(M=\left(a+b\right)^2-2ab=S^2-2p\)
b: \(N=\left(a+b\right)^3-3ab\left(a+b\right)=S^3-3pS\)
c: \(Q=\left(a^2+b^2\right)^2-2a^2b^2=\left(S^2-2p\right)^2-2\cdot p^2\)
a: \(M=\left(a+b\right)^2-2ab=S^2-2p\)
b: \(N=\left(a+b\right)^3-3ab\left(a+b\right)=S^3-3pS\)
c: \(Q=\left(a^2+b^2\right)^2-2a^2b^2=\left(S^2-2p\right)^2-2\cdot p^2\)
Cho a + b + c = 5 ; ab + bc + ca = 17 4 ; abc = 1. Tính 1) a2 + b2 + c2
2) a2b2 + b2c2 + c2a2
3) a3 + b3 + c3
4) a4 + b4 + c4
Nhanh lên mọi người mik còn phải gửi bài cho giáo viên mình nữa
Cho a + b + c = 0 và a2 + b2 + c2 =10. Tính a4 + b4 + c4
cho a + b + c = 0. Chứng minh đẳng thức:
a) a4 + b4 + c4 = 2(a2b2 + b2c2 +c2a2); b) a4 + b4 + c4 = 2(ab + bc + ca)2;
a4 + b4 + c4 =(a2+b2+c2)2 /2
A) Rút gọn biểu thức M =(d2+ b2 + 2)3- (a2 + b2 – 2)3 - 12(a2 + b2)2
B)Cho a+b=1. Hãy tính giá trị của biểu thức N = a3 +b3 + 3ab
Mng giải hộ mik với ạ, e cảm ơn, e đang cần gấp á
cho a + b + c = 1; a2 + b2 + c2 = 1; a3 + b3 + c3 = 1
Chứng minh rằng a2013 + b2013 + c2013 = 1
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Cho a + b + c = 0. Chứng minh rằng :
1) a2 + b2 + c2 = 2abc
2) a3 + b3 + c3 = 3abc
3) a5 + b5 + c5 = 5abc
Nhanh lên mình cần gấp. Mình cảm ơn các bạn nhiều.
Cho a + b+c = 0. Chứng minh 2*(a2 + b2 + c2) * 3*(a3 + b3 + c3) = 5*(a5 + b5 + c5). Nhanh lên mọi người ơi ai giải được thì mình cảm ơn nhiều
cho a,b,c thoả a3 + b3 + c3 = 3abc và a,b,c khác 0. Chứng minh rằng biểu thức Q = a2+ 3b2 + 5c2 / (a + b + c)2 có giá trị không đổi
+) Cho a3 + b3 + c3 = 3abc. CMR: a + b + c = 0 và a = b = c
+) Áp dụng: Cho a3 + b3 + c3 = 3abc, vào bài toán:
Tính giá trị của biểu thức P= \(\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\)