\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+3b}{c+3d}\)
_______________________________________________
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\left(\frac{2a+3a+4a}{5a+3a+a}\right)^{2000}\\ P=\left(\frac{9a}{9a}\right)^{2000}=1^{2000}=1\)
Vậy tại \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) thì P = 1
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{3b}{3d}=\frac{b}{d}=\frac{a+3b}{c+3d}.\)
\(\Rightarrow\frac{a+3b}{c+3d}=\frac{b}{d}\left(đpcm\right).\)
Chúc bạn học tốt!