\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
Cho ba số a, b, c thỏa mãn \(a+b+c=\frac{3}{2}\). Chứng minh rằng \(a^2+b^2+c^2\ge\frac{3}{4}\)
Chứng minh các bất đẳng thức sau bằng cách biến đổi tương đương:
a) Cho 1\(\le t\le\) 2. CMR: \(\frac{t^2}{2.t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)
b) Chứng minh với mọi số duong a, b ta luôn có \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\ge\frac{a^2+2ab}{2a^2+b^2}\)
Cho a,b,c là các số dương thỏa mãn a + b + c = 6. Chứng minh:
a,\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) ≥ \(\frac{3}{2}\)
b,\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\) ≥ 6
Cho a2 + b2 + c2 = 3. Chứng minh 2(a + b + c) + (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) ≥ 9
\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2)
1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh:
\(a^2+b^2+c^2+3abc\ge6\)
2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\)
3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh rằng:
\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{27}\)
4/ Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\ge\sqrt{\frac{11\left(a^2+b^2+c^2\right)}{ab+bc+ca}+5}\)
5/ Cho a, b, c là số thực dương. Chứng minh:
\(\frac{a+b+c}{9\sqrt[3]{abc}}\ge\frac{a^2}{4a^2+5bc}+\frac{b^2}{4b^2+5ca}+\frac{c^2}{4c^2+5ab}\)
Xem TOPIC (Post 1) tại:Câu hỏi của tth - Toán lớp 8 | Học trực tuyến (vẫn nhận bài đến hết thứ 7 tuần này, ngày 25/4.)
TOPIC này thời gian nộp bài tương tự như trước (1 tuần, đến hết thứ Năm tuần sau, ngày 30/4)
Riêng bài \(5\) mong mọi người tìm những cách hay chứ đừng như cách em, nhìn là hết muốn đọc rồi :))
Cho a,b,c>0, chứng minh \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Cho a, b, c> 0 và abc =1. Chứng minh: \(\frac{a^4b}{a^2+1}+\frac{b^4c}{b^2+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)
Cho a, b, c > 0. Chứng minh rằng \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
Bài 1: Cho a,b,c∈ R. Chứng minh các bất đẳng thức sau:
a) \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
b) \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\) ; với a,b ≥ 0
c) a4+b4 ≥ a3b + ab3
d) a4+3 ≥ 4a
e) a3+b3+c3 ≥ 3abc ; với a,b,c > 0
f) \(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\) ; với a,b ≠ 0
g) \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) ; với ab ≥ 1
h) (a5+b5)(a+b) ≥ (a4+b4)(a2+b2) ; với ab > 0