Áp dụng bất đẳng thức Cô-si :
\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)
Chứng minh tương tự : \(\frac{b^2}{c}+c\ge2b\); \(\frac{c^2}{a}+a\ge2c\)
Cộng theo vế của 3 bđt trên ta được :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)