Áp dụng bđt cosi cho 3 số thực không âm a,b,c ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) (1)
Và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\) (2)
Nhân (1) cho (2) vế theo vế được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
hay \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{3^2}{1}=9\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)