Lời giải:
\(P=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum a+3-\sum \frac{b^2(a+1)}{b^2+1}=6-\sum \frac{b^2(a+1)}{b^2+1}\)
Áp dụng BĐT AM-GM:
\(\sum \frac{b^2(a+1)}{b^2+1}\leq \sum \frac{b^2(a+1)}{2b}=\sum \frac{b(a+1)}{2}=\frac{\sum a+\sum ab}{2}\leq \frac{\sum a+\frac{(\sum a)^2}{3}}{2}=\frac{3+3}{2}=3\)
Do đó: $P\geq 6-3=3$
Vậy $P_{\min}=3$. Giá trị này đạt được tại $a=b=c=1$