đặt \(\frac{1}{a^2}=x;\frac{1}{b^2}=y;\frac{1}{c^2}=z\)
ta có x+y+z=1
T=\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)\)
=\(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{xyz}\)=\(\frac{\left(\left(x+y\right)+\left(x+z\right)\right)\left(\left(y+x\right)+\left(y+z\right)\right)\left(\left(z+x\right)+\left(z+y\right)\right)}{xyz}\)\(\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{64xyz}{xyz}\)=64
xảy ra khi x=y=z