Bạn tham khảo:
Bạn tham khảo:
Cho các số dương a,b,c. Chứng minh
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ac}}\)
Cho a,b,c là 3 số thực không âm sao cho không 2 số nào cùng bằng 0 đồng thời
. Chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+3\sqrt{3}.\sqrt{\frac{ab+bc+ac}{a^2+b^2+c^2}}\ge\frac{7\sqrt{2}}{2}\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
cho các số a,b,c thỏa mãn không có 2 số nào đồng thời bằng 0 và \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
chứng minh \(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\ge\frac{1}{\sqrt{2}}\)
Cho \(a;b;c\) là các số dương thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=4\). Chứng minh rằng:
\(\frac{1}{2\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+2\sqrt{ac}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+\sqrt{ac}+2\sqrt{ab}}\le\frac{1}{\sqrt{abc}}\)
Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
a,b,c>0, biết a+b+c=3
CMR a)\(\frac{ab}{\sqrt{a^2+3b^2}}+\frac{bc}{\sqrt{b^2+3c^2}}+\frac{ac}{\sqrt{c^2+3a^2}}\)≤\(\frac{3}{2}\)
b)\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\)≥\(\frac{3}{2}\)
Cho a,b,c > 0. CMR:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)