Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Nguyễn Nhật Minh

Cho △ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Kẻ DI vuông góc với BC (I ∈ BC )

a)Chứng minh △ABD=△IBD

b) Chứng minh BD ⊥AI

c)Gọi K là giao điểm của hai đường thẳng DI và AB. Chứng minh DK = DC

d)Từ I kẻ đường thẳng // với BD cắt AB tại E. Chứng minh △ BIE cân

Nguyễn Thanh Hằng
6 tháng 3 2018 lúc 20:11

A B C D I K 1 2 H 1 2

a/ Xét \(\Delta ABD;\Delta IBD\) có :

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BID}=90^0\\BHchung\\\widehat{B1}=\widehat{B2}\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABD=\Delta IBD\left(ch-gn\right)\)

b/ Xét \(\Delta ABH;\Delta ADH\) có :

\(\left\{{}\begin{matrix}AB=BI\left(\Delta ABD=\Delta IBD\right)\\\widehat{B1}=\widehat{B2}\\AHchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABH=\Delta ADH\left(c-g-c\right)\)

\(\Leftrightarrow\widehat{H1}=\widehat{H2}\)

\(\widehat{H1}+\widehat{H2}=180^0\left(kềbuf\right)\)

\(\Leftrightarrow\widehat{H1}=\widehat{H2}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow BD\perp AI\left(đpcm\right)\)

c/ Xét \(\Delta ADK;\Delta IDC\) có :

\(\left\{{}\begin{matrix}AD=DI\left(\Delta ABD=\Delta IBD\right)\\\widehat{DAK}=\widehat{DIC}\\\widehat{ADK}=\widehat{IDC}\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADK=\Delta IDC\left(g-c-g\right)\)

\(\Leftrightarrow DK=DC\)

Đẹp Trai Không Bao Giờ S...
6 tháng 3 2018 lúc 20:17

Chương II : Tam giác


Các câu hỏi tương tự
Võ Nguyễn Nhật Minh
Xem chi tiết
Võ Nguyễn Nhật Minh
Xem chi tiết
Trương Văn Tùng
Xem chi tiết
Trương Tuấn
Xem chi tiết
Vũ Lê Minh
Xem chi tiết
Nguyễn Thảo
Xem chi tiết
Dieu Thao Truong
Xem chi tiết
Nguyễn Phạm Công Viễn
Xem chi tiết
Quynh Truong
Xem chi tiết