Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quynh Truong

BÀI 12 Cho tam giác ABC vuông tại A . đường phân giác BD. Kẻ DH vuông góc với BC.(Hthuộc BC) Gọi K là giao điểm  của AB và HD . Chứng minh rằng a) tam giác ABD =tam giác HBD; b) BD vuông góc KC c) DK =DC

Buddy
18 tháng 4 2021 lúc 22:19

Xét tam giác ABD và tam giác HBD có:

BD: chung.

Góc BAD=BHD=90 độ.

Góc ABD=HBD(Phân giác BD)

=> Tam giác ABD=tam giác HBD(ch-gn)

b/ Gọi giao điểm của BD và AH là O.

Xét tam giác AOB và tam giác HOB có:

BO:chung.

Góc ABO=HBO(Phân giác BD)

BA-BH(cạnh tương ứng của tam giác BAD=BHD)

=>Tam giác AOB=tam giác HOB(c-g-c)

=> Góc AOB=HOB(góc tương ứng)=90 độ

Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)

=> AH//KC

Mà BD vuông góc với AH nên BD cũng vuông góc với KC.

c/Xét tam giác ADK và tam giác HDC có:

DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)

Góc DAK=DHC=90 độ.

Góc ADK=HDC(đối đỉnh)

=> tam giác ADK=tam giác HDC(g-c-g)

=> DK=DC(cạnh tương ứng)

Mà trong tam giác vuông HDC có:

DC là cạnh huyền nên DC>DH

=> DK>DH(đpcm)

=> tự vẽ hình nha .


Các câu hỏi tương tự
Tuyn Nguyễn Kiều
Xem chi tiết
Phong Nong
Xem chi tiết
Vũ Lê Minh
Xem chi tiết
Nguyễn Ngọc Thiên Nhi
Xem chi tiết
Trương Tuấn
Xem chi tiết
minhductran
Xem chi tiết
lilith.
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Dieu Thao Truong
Xem chi tiết